Journal article
Authors list: Zaichenko, A; Schröder, D; Janek, J; Mollenhauer, D
Publication year: 2020
Pages: 2395-2404
Journal: Chemistry - A European Journal
Volume number: 26
Issue number: 11
ISSN: 0947-6539
Open access status: Green
DOI Link: https://doi.org/10.1002/chem.201904110
Publisher: Wiley
Abstract:
Recent experimental investigations demonstrated the generation of singlet oxygen during charging at high potentials in lithium/oxygen batteries. To contribute to the understanding of the underlying chemical reactions a key step in the mechanism of the charging process, namely, the dissociation of the intermediate lithium superoxide to oxygen and lithium, was investigated. Therefore, the corresponding dissociation paths of the molecular model system lithium superoxide (LiO2) were studied by CASSCF/CASPT2 calculations. The obtained results indicate the presence of different dissociation paths over crossing points of different electronic states, which lead either to the energetically preferred generation of triplet oxygen or the energetically higher lying formation of singlet oxygen. The dissociation to the corresponding superoxide anion is energetically less preferred. The understanding of the detailed reaction mechanism allows the design of strategies to avoid the formation of singlet oxygen and thus to potentially minimize the degradation of materials in alkali metal/oxygen batteries. The calculations demonstrate a qualitatively similar but energetically shifted behavior for the homologous alkali metals sodium and potassium and their superoxide species. Fundamental differences were found for the covalently bound hydroperoxyl radical.
Citation Styles
Harvard Citation style: Zaichenko, A., Schröder, D., Janek, J. and Mollenhauer, D. (2020) Pathways to Triplet or Singlet Oxygen during the Dissociation of Alkali Metal Superoxides: Insights by Multireference Calculations of Molecular Model Systems, Chemistry - A European Journal, 26(11), pp. 2395-2404. https://doi.org/10.1002/chem.201904110
APA Citation style: Zaichenko, A., Schröder, D., Janek, J., & Mollenhauer, D. (2020). Pathways to Triplet or Singlet Oxygen during the Dissociation of Alkali Metal Superoxides: Insights by Multireference Calculations of Molecular Model Systems. Chemistry - A European Journal. 26(11), 2395-2404. https://doi.org/10.1002/chem.201904110