Journal article
Authors list: Werner, S; Glaser, C; Kasper, T; Lê, TNN; Gross, S; Smarsly, BM
Publication year: 2022
Journal: Chemistry - A European Journal
Volume number: 28
Issue number: 3
ISSN: 0947-6539
eISSN: 1521-3765
Open access status: Hybrid
DOI Link: https://doi.org/10.1002/chem.202103437
Publisher: Wiley
Abstract:
The precise detection of the toxic gas H2S requires reliable sensitivity and specificity of sensors even at minute concentrations of as low as 10 ppm, the value corresponding to typical exposure limits. CuO can be used for H2S dosimetry, based on the formation of conductive CuS and the concomitant significant increase in conductance. In theory, at elevated temperature the reaction is reversed and CuO is formed, ideally enabling repeated and long-term use of one sensor. Yet, the performance of CuO tends to drop upon cycling. Utilizing defined CuO nanorods we thoroughly elucidated the associated detrimental chemical changes directly on the sensors, by Raman and electron microscopy analysis of each step during sensing (CuO -> CuS) and regeneration (CuS -> CuO) cycles. We find the decrease in the sensing performance is mainly caused by the irreversible formation of CuSO4 during regeneration. The findings allowed us to develop strategies to reduce CuSO4 formation and thus to substantially maintain the sensing stability even for repeated cycles. We achieved CuO-based dosimeters possessing a response time of a few minutes only, even for 10 ppm H2S, and prolonged life-time.
Citation Styles
Harvard Citation style: Werner, S., Glaser, C., Kasper, T., Lê, T., Gross, S. and Smarsly, B. (2022) H2S Dosimetry by CuO: Towards Stable Sensors by Unravelling the Underlying Solid-State Chemistry, Chemistry - A European Journal, 28(3), Article e202103437. https://doi.org/10.1002/chem.202103437
APA Citation style: Werner, S., Glaser, C., Kasper, T., Lê, T., Gross, S., & Smarsly, B. (2022). H2S Dosimetry by CuO: Towards Stable Sensors by Unravelling the Underlying Solid-State Chemistry. Chemistry - A European Journal. 28(3), Article e202103437. https://doi.org/10.1002/chem.202103437