Journalartikel

London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution


AutorenlisteRummel, L; Domanski, MHJ; Hausmann, H; Becker, J; Schreiner, PR

Jahr der Veröffentlichung2022

ZeitschriftAngewandte Chemie International Edition

Bandnummer61

Heftnummer29

ISSN1433-7851

eISSN1521-3773

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1002/anie.202204393

VerlagWiley


Abstract
We present an experimental and computational study on the conformers of N,N'-diphenylthiourea substituted with different dispersion energy donor (DED) groups. While the unfolded anti-anti conformer is the most relevant for thiourea catalysis, intramolecular noncovalent interactions counterintuitively favor the folded syn-syn conformer, as evident from a combination of low-temperature nuclear magnetic resonance measurements and computations. In order to quantify the noncovalent interactions, we utilized local energy decomposition analysis and symmetry-adapted perturbation theory at the DLPNO-CCSD(T)/def2-TZVPP and sSAPT0/6-311G(d,p) levels of theory. Additionally, we applied a double-mutant cycle to experimentally study the effects of bulky substituents on the equilibria. We determined London dispersion as the key interaction that shifts the equilibria towards the syn-syn conformers. This preference is likely a factor why such thiourea derivatives can be poor catalysts.



Zitierstile

Harvard-ZitierstilRummel, L., Domanski, M., Hausmann, H., Becker, J. and Schreiner, P. (2022) London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution, Angewandte Chemie International Edition, 61(29), Article e202204393. https://doi.org/10.1002/anie.202204393

APA-ZitierstilRummel, L., Domanski, M., Hausmann, H., Becker, J., & Schreiner, P. (2022). London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution. Angewandte Chemie International Edition. 61(29), Article e202204393. https://doi.org/10.1002/anie.202204393



Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 11:40