Journalartikel
Autorenliste: Mueller, S; de Haas, B; Metzger, A; Drewing, K; Fiehler, K
Jahr der Veröffentlichung: 2019
Seiten: 5172-5184
Zeitschrift: Human Brain Mapping
Bandnummer: 40
Heftnummer: 18
ISSN: 1065-9471
eISSN: 1097-0193
Open Access Status: Green
DOI Link: https://doi.org/10.1002/hbm.24764
Verlag: Wiley
Abstract:
Exploring an object's shape by touch also renders information about its surface roughness. It has been suggested that shape and roughness are processed distinctly in the brain, a result based on comparing brain activation when exploring objects that differed in one of these features. To investigate the neural mechanisms of top-down control on haptic perception of shape and roughness, we presented the same multidimensional objects but varied the relevance of each feature. Specifically, participants explored two objects that varied in shape (oblongness of cuboids) and surface roughness. They either had to compare the shape or the roughness in an alternative-forced-choice-task. Moreover, we examined whether the activation strength of the identified brain regions as measured by functional magnetic resonance imaging (fMRI) can predict the behavioral performance in the haptic discrimination task. We observed a widespread network of activation for shape and roughness perception comprising bilateral precentral and postcentral gyrus, cerebellum, and insula. Task-relevance of the object's shape increased activation in the right supramarginal gyrus (SMG/BA 40) and the right precentral gyrus (PreCG/BA 44) suggesting that activation in these areas does not merely reflect stimulus-driven processes, such as exploring shape, but also entails top-down controlled processes driven by task-relevance. Moreover, the strength of the SMG/PreCG activation predicted individual performance in the shape but not in the roughness discrimination task. No activation was found for the reversed contrast (roughness > shape). We conclude that macrogeometric properties, such as shape, can be modulated by top-down mechanisms whereas roughness, a microgeometric feature, seems to be processed automatically.
Zitierstile
Harvard-Zitierstil: Mueller, S., de Haas, B., Metzger, A., Drewing, K. and Fiehler, K. (2019) Neural correlates of top-down modulation of haptic shape versus roughness perception, Human Brain Mapping, 40(18), pp. 5172-5184. https://doi.org/10.1002/hbm.24764
APA-Zitierstil: Mueller, S., de Haas, B., Metzger, A., Drewing, K., & Fiehler, K. (2019). Neural correlates of top-down modulation of haptic shape versus roughness perception. Human Brain Mapping. 40(18), 5172-5184. https://doi.org/10.1002/hbm.24764