Journalartikel

Deep Transfer Learning Enables Robust Prediction of Antimicrobial Resistance for Novel Antibiotics


AutorenlisteRen, Yunxiao; Chakraborty, Trinad; Doijad, Swapnil; Falgenhauer, Linda; Falgenhauer, Jane; Goesmann, Alexander; Schwengers, Oliver; Heider, Dominik

Jahr der Veröffentlichung2022

ZeitschriftAntibiotics

Bandnummer11

Heftnummer11

ISSN2079-6382

Open Access StatusGold

DOI Linkhttps://doi.org/10.3390/antibiotics11111611

VerlagMDPI


Abstract

Antimicrobial resistance (AMR) has become one of the serious global health problems, threatening the effective treatment of a growing number of infections. Machine learning and deep learning show great potential in rapid and accurate AMR predictions. However, a large number of samples for the training of these models is essential. In particular, for novel antibiotics, limited training samples and data imbalance hinder the models’ generalization performance and overall accuracy. We propose a deep transfer learning model that can improve model performance for AMR prediction on small, imbalanced datasets. As our approach relies on transfer learning and secondary mutations, it is also applicable to novel antibiotics and emerging resistances in the future and enables quick diagnostics and personalized treatments.




Autoren/Herausgeber




Zitierstile

Harvard-ZitierstilRen, Y., Chakraborty, T., Doijad, S., Falgenhauer, L., Falgenhauer, J., Goesmann, A., et al. (2022) Deep Transfer Learning Enables Robust Prediction of Antimicrobial Resistance for Novel Antibiotics, Antibiotics, 11(11), Article 1611. https://doi.org/10.3390/antibiotics11111611

APA-ZitierstilRen, Y., Chakraborty, T., Doijad, S., Falgenhauer, L., Falgenhauer, J., Goesmann, A., Schwengers, O., & Heider, D. (2022). Deep Transfer Learning Enables Robust Prediction of Antimicrobial Resistance for Novel Antibiotics. Antibiotics. 11(11), Article 1611. https://doi.org/10.3390/antibiotics11111611



Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 11:47