Journalartikel

Cofunctioning of bacterial exometabolites drives root microbiota establishment


AutorenlisteGetzke, Felix; Hassani, M. Amine; Crüsemann, Max; Malisic, Milena; Zhang, Pengfan; Ishigaki, Yuji; Böhringer, Nils; Fernández, Alicia Jiménez; Wang, Lei; Ordon, Jana; Ma, Ka-Wai; Thiergart, Thorsten; Harbort, Christopher J.; Wesseler, Hidde; Miyauchi, Shingo; Garrido-Oter, Ruben; Shirasu, Ken; Schäberle, Till F.; Hacquard, Stéphane; Schulze-Lefert, Paul

Jahr der Veröffentlichung2023

ZeitschriftProceedings of the National Academy of Sciences

Bandnummer120

Heftnummer15

ISSN0027-8424

eISSN1091-6490

Open Access StatusHybrid

DOI Linkhttps://doi.org/10.1073/pnas.2221508120

VerlagNational Academy of Sciences


Abstract
Soil-dwelling microbes are the principal inoculum for the root microbiota, but our under-standing of microbe-microbe interactions in microbiota establishment remains fragmen-tary. We tested 39,204 binary interbacterial interactions for inhibitory activities in vitro, allowing us to identify taxonomic signatures in bacterial inhibition profiles. Using genetic and metabolomic approaches, we identified the antimicrobial 2,4-diacetylphloroglucino l (DAPG) and the iron chelator pyoverdine as exometabolites whose combined func-tions explain most of the inhibitory activity of the strongly antagonistic Pseudomonas brassicacearum R401. Microbiota reconstitution with a core of Arabidopsis thaliana root commensals in the presence of wild -type or mutant strains revealed a root niche-specific cofunction of these exometabolites as root competence determinants and drivers of pre-dictable changes in the root-associated community. In natural environments, both the corresponding biosynthetic operons are enriched in roots, a pattern likely linked to their role as iron sinks, indicating that these cofunctioning exometabolites are adaptive traits contributing to pseudomonad pervasiveness throughout the root microbiota.



Zitierstile

Harvard-ZitierstilGetzke, F., Hassani, M., Crüsemann, M., Malisic, M., Zhang, P., Ishigaki, Y., et al. (2023) Cofunctioning of bacterial exometabolites drives root microbiota establishment, Proceedings of the National Academy of Sciences, 120(15), Article e2221508120. https://doi.org/10.1073/pnas.2221508120

APA-ZitierstilGetzke, F., Hassani, M., Crüsemann, M., Malisic, M., Zhang, P., Ishigaki, Y., Böhringer, N., Fernández, A., Wang, L., Ordon, J., Ma, K., Thiergart, T., Harbort, C., Wesseler, H., Miyauchi, S., Garrido-Oter, R., Shirasu, K., Schäberle, T., Hacquard, S., ...Schulze-Lefert, P. (2023). Cofunctioning of bacterial exometabolites drives root microbiota establishment. Proceedings of the National Academy of Sciences. 120(15), Article e2221508120. https://doi.org/10.1073/pnas.2221508120



Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 11:56